
Towards Robust Multi-Tenant Clouds Through
Multi-Constrained VM Placement

Yutong Zhai1,2 Gongming Zhao1,2 Hongli Xu1,2 Yangming Zhao1,2 Jiawei Liu2,3 Xingpeng Fan1,2
1School of Computer Science and Technology, University of Science and Technology of China, China

2Suzhou Institute for Advanced Study, University of Science and Technology of China, China
3School of Software Engineering, University of Science and Technology of China, China

Abstract—More and more tenants (enterprises and personal
users) migrate their tasks to clouds since it is a simple and
low-cost way to obtain enough computing resources. However,
due to potential node failures and malicious tenants, the
modern cloud encounters one critical challenge, i.e., robustness.
Conventionally, the cloud vendors deploy auxiliary systems
to protect the cloud, which requires additional resource cost
and increases the network complexity. To enhance the system
robustness, this paper proposes a complementary scheme to
improve the cloud robustness through efficient VM placement.
Specifically, to alleviate the impact of malicious tenants and
node failures on the cloud, when deploying VMs, we limit the
number of pods (or service nodes) that each tenant can access,
and the number of tenants hosted by each pod (or service
node). Though there are a lot of works on VM placement,
it is very challenging when the robustness issue is taken into
consideration. To solve this problem, we formulate an integer
linear programming and propose a rounding-based algorithm
with a logarithmic approximation ratio. The simulation results
show the high efficiency of the proposed algorithm. For
example, our algorithm can improve the network throughput
by 150% with other alternatives.

Index Terms—Multi-Tenant Clouds, Robustness, Service N-
ode, Computing Node, VM Placement.

I. INTRODUCTION

With the development of cloud computing, it has become
common for enterprises to migrate their computation tasks
to the cloud since such a migration significantly reduces the
complexity and costs of managing private data centers. As
shown in Fig. 1, a typical cloud (e.g., Amazon EC2 [1] and
Alibaba cloud [2]) is composed with many pods, each of
which consists of a set of computing nodes and one service
node [3]. Cloud vendors deploy a huge number of computing
nodes in their clouds and provide computing resources (e.g.,
CPU and RAM) to tenants in the form of VMs. On the
other hand, a service node in each pod can provide various
network services (e.g., VPN and ELB) to tenants.

In multi-tenant clouds, malicious tenants and service
node failures are very common [4], which brings the ro-
bustness issue. Specifically, malicious tenants will launch
wide spectrum network attacks, including denial of service

Computing

Node

VM . . .

Computing

Node

VM VM

VM

VMVM

Pod

VPN SNAT ELB

Service Node

Computing

Node

VM . . .

Computing

Node

VM VM

VM

VMVM

Pod

Service Node

. . .

. . . VPN SNAT ELB . . .

Fig. 1: A typical cloud architecture consists of several pods,
and each pod includes a set of computing nodes and a service
node [3].

attacks (DoS) and co-residency attacks [5] against the service
node. For example, Amazon EC2 clouds are frequently
attacked by spammers and DoS [6]. Malicious tenants send
a large amount of traffic, which paralyzes service nodes
and decreases network performance. Once a service node is
defeated by a malicious tenant, all the VMs in the same pod
cannot get any be served network services provided by this
service node. Meanwhile, the service nodes (all the network
functions residing with these service nodes) themselves may
frequently fail in commodity clouds [4]. According to a
recent report [7], the median time between two consecutive
failures of firewall and load balancer is 7.5 hours and 5.2
hours, respectively. These service node failures degrade the
QoS provided to tenants [8].

Conventionally, the cloud vendors address the robustness
issue by deploying accessorial systems, such as an intrusion
detection system to protect service nodes against malicious
tenants [9] and a monitoring system to monitor the service
node status [10]. Though this method is feasible to promote
system robustness, additional resources are required, and
the system management will be more complexity. In this
work, we argue that cloud robustness can be promoted
through multi-constraint VM placement without consuming
additional resources. It is worth noting that our work plays
a parallel story to further promote cloud robustness, rather978-0-7381-3207-5/21/$31.00 c© 2021 IEEE

2

than trying to improve previous methods or even substitute
them.

To this end, we will introduce two constraints when we
deploy VMs in the cloud, besides purely pursuing load
balancing on computing nodes and service nodes. First, the
VMs belonging to the same tenants can be allocated in most
h pods, and second, each pod can host VMs renting to at
most w tenants, where h and w are parameters determined
by the system. The rationale behind the first constraint is
that with proper isolation techniques [11], a malicious tenant
can only attack the service nodes that provide services for
the allocated VMs. Hence the first constraint can limit the
damage caused by a single malicious tenant. On the other
hand, the failure of a service node will result in performance
degradation to all the tenants in the corresponding pod.
Therefore, we introduce the second constraint.

Note that, in this work, we do not consider the failure
of computing nodes, since a computing node usually only
supports a limited number of VMs. For example, the work
[12] shows that each computing node supports 10.8 VM
instances on average. Thus, the failure of a computing
node cannot significantly degrade the performance from the
cloud’s perspective. Actually, the algorithm proposed in our
work can also be easily extended to the case that the failure
of computing nodes should be taken into considered. The
main contributions of this paper are as follows:

1) We formally formulate the robust VM placement prob-
lem, named VMPR, and analyze the problem complexity.

2) To solve VMPR, we propose an efficient algorithm
called R-VMPR, and analyze the approximate performance.

3) We evaluate the proposed method through large-scale
simulations. The simulation results show the high efficiency
of our proposed algorithm.

The rest of this paper is organized as follows. Section
II describes the system model. Section III formally defines
the VMPR problem. In Section IV, we present an efficient
algorithm to solve VMPR, and give the approximate per-
formance. Section V shows the simulation results of our
proposed algorithm, compared to some state-of-art solutions.
In section VI, we conclude this paper.

II. SYSTEM MODEL

A. System Model

1) Infrastructure Model: A typical cloud consists of
many pods, each of which consists of a set of computing
nodes and one service node [13]. Computing nodes provide
computing resources to tenants in the form of VMs. We use
V = {v1, v2, ...vn} to denote the set of computing nodes,
where n is the number of computing nodes. Service nodes
provide various network services (e.g., elastic load-balancing
(ELB), firewall [14]) to tenants. In many common cloud

architectures [3], each computing node is served by one ser-
vice node, and each service node is responsible for providing
services for VMs from all connected computing nodes. Since
each service node provides several specific services [15],
different types of service nodes are independent of each
other. For ease of description, we only consider one type
of service node in this paper. We denote the service node
set as S = {s1, s2, ...sq}, where q is the number of pods in
the cloud.

We use s(v) to represent the service node that provides
service for computing node v ∈ V . In other words, service
node s(v) is responsible for providing services for VMs in
computing node v. For each service node s, we use C(s)
to denote its traffic processing capacity. Since some tenants
may have deployed VMs and generated traffic before, we
use b(s) to denote the existing background traffic in service
node s. Moreover, let z(u, s) be a binary constant which is
1 if service node s has background traffic from tenant u;
otherwise z(u, s) = 0. For each computing node v, we use
R(v) to denote the total amount of resources (e.g., RAM and
CPU), and b(v) to denote the amount of used resources. Note
that, R(v) and b(v) can be expanded into resource vectors
that represents different types of resources in computing
node v.

2) Multi-Tenant Model: In a multi-tenant cloud, a set
of tenants rent VMs and buy services from cloud vendors
according to their demands. Let U = {u1, u2, ...um} de-
note the set of tenants, where m = |U| is the number
of tenants in the cloud. Tenants usually request a set of
VMs with different application requirements, such as batch
processing and high-performance computing. Therefore, the
required resources of each VM is different. For each tenant
u ∈ U , we represent the set of requested VM instances as
Pu = {pu,1, pu,2, ...pu,lu}, where lu is the number of VM
instances required by tenant u. Each VM instance pu,d ∈ Pu
(1 ≤ d ≤ lu) will consume some computing resources, such
as CPU and RAM, denoted as r(pu,d). Similar to R(v) and
b(v), r(pu,d) also can be expanded into a resource vector that
represents different resource requirements. Moreover, for
each VM instance pu,d ∈ Pu, we use f(pu,d) to denote the
traffic demand that needs to be served by the corresponding
service node. In practice, r(pu,d) is specified when the
VM instance pu,d is created, and f(pu,d) can be estimated
according to the fees paid by tenant u and the type of VM
instance pu,d [16].

III. PROBLEM DEFINITION AND COMPLEXITY ANALYSIS

A. Problem Definition

According to the illustration in section II-A, we formally
define the VM Placement problem that can achieve cloud
Robustness (VMPR) with the following three constraints: 1)
To improve the robustness when encountering the service

3

node failure event, we limit the number of tenants served
by each service node, that is, each service node can serve
h tenants at most; 2) To improve the robustness when
encountering malicious tenants, we should ensure that the
traffic of each tenant can be forwarded to w service nodes
at most; 3) Moreover, we want to achieve the load balance
among all service nodes and among all computing nodes.
Accordingly, we formulate the VMPR problem as Eq. (1).

minλ

S.t.

∑
v∈V

x
pu,d
v = 1, ∀u, d

xu,dv ≤ yus(v), ∀u, v, d
z(u, s) ≤ yus , ∀u, s∑
u∈U

yus ≤ h ∀s∑
s∈S

yus ≤ w ∀u∑
u∈U

∑
pu,d∈Pu

∑
v∈V:s(v)=s

x
pu,d
v · f(pu,d)

+b(s) ≤ C(s) · λ ∀s∑
u∈U

∑
pu,d∈Pu

x
pu,d
v · r(pu,d) + b(v)≤R(v) ·λ, ∀v

x
pu,d
v ∈ {0, 1}, ∀u, v, d
yus ∈ {0, 1}, ∀u, s

(1)
In Eq. (1), binary variable x

pu,d
v denotes whether VM

instance pu,d of tenant u is placed in computing node v or
not. Variable yus ∈ {0, 1} represents whether service node
s will process the traffic of tenant u or not. The first set
of equations means that each VM will be placed on one
and only one computing node. The second and third sets of
inequalities express that once a VM of tenant u is placed
on computing node v, the connected service node s(v) will
process the traffic from tenant u (i.e., yus(v) = 1). Similarly,
if service node s has background traffic from tenant u (i.e.,
z(u, s) = 1), we have yus = 1. The fourth and fifth sets
of inequalities represent the robustness constraints when
encountering service node failures or malicious tenants. In
other words, the number of service nodes accessed by each
tenant cannot exceed h and the number of tenants that a
service node can serve cannot exceed w. The sixth and
seventh of inequalities indicates the resource load on each
computing node vj and the traffic load of each service node,
where λ is the load balancing factor. Our goal is to achieve
the load balancing among all service nodes and among all
computing nodes, that is, min λ.

IV. ALGORITHM DESIGN

A. Algorithm Description

The R-VMPR algorithm starts by constructing the linear
programming as relaxation of VMPR (LP-VMPR). More

specifically, LP-VMPR assumes that both the VM placement
and the VM’s traffic demands are splittable. That is, LP-
VMPR relaxes the variables {xpu,d

v } and {yus } from integral
to fractional. Since LP-VMPR is linear programming, we
can solve it with a linear programming solver in polynomial
times, and get the optimal solution {x̃pu,d

v } and {ỹus } (lines
1-3), and the optimal result is denote as λ̃. As LP-VMPR is
relaxation of VMPR, λ̃ is the lower-bound result for VMPR.
The next step is to derive an integer solution by randomized
rounding [17]. We derive the integer solution, denoted by
{x̂pu,d

v } and {ŷus }. For each individual tenant u and service
node s, R-VMPR rounds variable ŷus to 1 with probability
ỹus (lines 4-9) to keep the robustness constraints of service
nodes. Each rounding decision is independent with each
other. Then R-VMPR decides the VM placement scheme
by rounding variables x̂pu,d

v to 1 with probability x̃pu,d
v /ỹus .

If x̂pu,d
v == 1 then we place VM pu,d on computing node v

(lines 10-17). Based on the above process, we get an integer
solution {x̂pu,d

v , ŷus }. That is, we obtain a VM placement
solution that can achieve cloud robustness.

Algorithm 1 R-VMPR: Rounding-based Algorithm for VM-
PR

1: Step 1: Sloving the relaxation of the VMPR Problem
2: Construct a linear programming named LP-VMPR for-

malized in Eq. (1)
3: Obtain the optimal fractional solutions {x̃pu,d

v , ỹus }
4: Step 2: Selecting service nodes for tenants
5: for each tenant u in U do
6: for each service node s in S do
7: Set ŷus = 1 with probability ỹus
8: if ŷus == 1 then
9: Select service node s for tenant u

10: Step 3: Placing VM instances on computing nodes
11: for each tenant u in U do
12: for each requested VM pu,d in Pu do
13: for each computing node v in V do
14: if ŷus(v) == 1 then

15: Set x̂pu,d
v = 1 with probability x̃

pu,d
v

ỹu
s(v)

16: if x̂pu,d
v == 1 then

17: Place VM pu,d on computing node v

Approximation Factor: The approximate factors of our
algorithm are bi-criteria approximations with respect to both
the objective value and robustness constraints. In many
practical scenarios, these factors are constant. For example,
consider a cloud with thousands of computing nodes and
hundreds of service nodes. Then we have n = 1000 and
q = 100. In general, one computing node can accommodate
more than ten VMs, and there are more than ten computing
nodes in one pod. Thus, we estimate the value α = 10.

4

Then the bi-criteria approximation factor of computing n-
odes and service nodes becomes 2 logn

α + 3 = 3.99 and
2 log q
α + 3 = 3.66, respectively.

V. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

1) Performance Metrics: We use the following five
performance metrics to evaluate the robustness and load
balancing performance of our proposed algorithm. (1) The
load ratio of computing nodes (CNs); (2) The load ratio
of service nodes (SNs); (3) The average number of tenants
served by each service node; (4) The average number
of service nodes that each tenant accesses; (5) The valid
throughput of all service nodes. In the simulations, we use
the first two metrics to evaluate the load balancing among all
computing nodes and among all service nodes, respectively.
The third to fifth metrics are used to evaluate robustness, that
is, minimize the impact of malicious tenants and the service
node failures. For each computing node, its resource load
ratio is the maximum utilization of its CPU load ratio and
RAM load ratio. We use the largest resource load ratio of all
computing nodes as the first metric. For each service node,
its load ratio is its traffic load divided by its traffic processing
capacity, and we use their largest value as the second metric.
Moreover, we also measure the average number of tenants
served by each service node, and the average number of
service nodes that tenants access as the third metric and the
fourth metric, respectively. We compute the valid throughput
of all service nodes with the robustness constraints as the
fifth metric.

2) Benchmarks: We choose three benchmarks for per-
formance comparison. The first benchmark, called least-
load-first with service nodes (LLF-SN) [18], represents a
category solution that separately considers the remaining
traffic processing capacity of service nodes and the remain-
ing computing resource of computing nodes. LLF-SN first
chooses one service node with the least workloads, and then
selects the most idle computing node from the computing
nodes served by this service node to place VM instances. The
second benchmark is least-load-first with computing nodes
(LLF-CN) [19], which places VM instances on the com-
puting node with the least workloads. The last benchmark
is the Weight-Round-Robin (WRR) [20] method. WRR first
allocates weights to each service node based on its remaining
resources and the remaining resources of the computing
nodes served by it. Second, WRR generates a random value
and selects the service node according to the value. Finally,
WRR selects a computing node from the computing nodes
served by the service node to place VM instances.

Name vCPU RAM(GB) Bandwidth(Gbps)
s5.small2 1 2 1.5
s5.medium4 2 4 1.5
s5.large8 4 8 1.5
m5.small8 1 8 1.5
m5.medium16 2 16 1.5
m5.large32 4 32 1.5
c4.small2 1 2 3.0
c4.medium4 2 4 3.0
c4.large8 4 8 3.0

TABLE I: Multiple VM instances with detailed resources
demand from Tencent Cloud [23].

B. Large-Scale Simulations

1) Simulation Settings: We perform our simulations over
two infrastructure clouds. The first cloud is similar with
Koala [21], which consists of 20 service nodes and 600
computing nodes, and each service node serves the traffic of
30 computing nodes. The second cloud is generated based
on the Google cluster-data [22], which consists of 10047
computing nodes and 324 service nodes. Each service node
serves the traffic of 25-35 computing nodes. As mentioned in
Section III, one or more types of service nodes do not affect
our simulation results. For simplicity, we only consider one
type of service node. We generate three different types of
VM instances: standard, memory-optimized, and computing.
The above three types of instances come from Tencent
Clouds [23], even of which carries different amount of
required resources (vCPU, RAM, and bandwidth), as shown
in Table I. In Table I, the first three instances represent
the standard instances, accommodating most applications,
such as streaming media business and online-game [23].
The next three instances represent the memory-optimized
instances, which are suitable for applications that require
extensive memory operations, searches, and computations,
such as high-performance databases and distributed memory
cachings [23]. The last three instances are computing in-
stances, which are suitable for compute-intensive workloads
such as batch processing, high performance computing, and
dedicated game servers [23]. The number of tenants in the
above two clouds is set as 140 and 2000, respectively.
Each tenant randomly creates 10-40 VM instances from
Table I with different types. For each computing node, we
set its vCPU cores and RAM capacity as 25 and 150GB,
respectively. The traffic processing capacity of each service
node is set as 500Gbps, and the robustness parameters h and
w are set as 10 and 40 by default, respectively. We run each
simulation 30 times and calculate the average value as the
simulation results.

2) Simulation Results: In large-scale simulations, we
first test the load balancing performance, then we evaluate

5

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14

L
o
a
d
 R

a
ti

o
 o

f
C

N
s

Number of Tenants (× 10)

LLF-SN

WRR

LLF-CN

R-VMPR

(a) Koala-Based Cloud

0.2

0.4

0.6

0.8

1.0

5 7.5 10 12.5 15 17.5 20

L
o
a
d
 R

a
ti

o
 o

f
C

N
s

Number of Tenants (× 100)

LLF-SN

WRR

LLF-CN

R-VMPR

(b) Google-Based Cloud

Fig. 2: Load Ratio of Computing Nodes vs. Number of Tenants

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14

L
o
a
d
 R

a
ti

o
 o

f
S

N
s

Number of Tenants (× 10)

LLF-CN

WRR

LLF-SN

R-VMPR

(a) Koala-Based Cloud

0.2

0.4

0.6

0.8

1.0

5 7.5 10 12.5 15 17.5 20

L
o
a
d
 R

a
ti

o
 o

f
S

N
s

Number of Tenants (× 100)

LLF-CN

WRR

LLF-SN

R-VMPR

(b) Google-Based Cloud

Fig. 3: Load Ratio of Service Nodes vs. Number of Tenants

 30

 60

 90

 120

 150

2 4 6 8 10 12 14

A
v
g
.
N

o
.
o
f

T
en

an
ts

Number of Tenants (× 10)

LLF-SN

LLF-CN

WRR

R-VMPR

(a) Koala-Based Cloud

 30

 60

 90

 120

 150

5 7.5 10 12.5 15 17.5 20

A
v
g
.
N

o
.
o
f

T
en

an
ts

Number of Tenants (× 100)

LLF-SN

LLF-CN

WRR

R-VMPR

(b) Google-Based Cloud

Fig. 4: Average Number of Tenants in Each Service Node vs.
Number of Tenants

 4

 8

 12

 16

 20

2 4 6 8 10 12 14A
v
g
.
N

o
.
o
f

S
er

v
ic

e
N

o
d
es

Number of Tenants (× 10)

LLF-SN

LLF-CN

WRR

R-VMPR

(a) Koala-Based Cloud

 4

 8

 12

 16

 20

5 7.5 10 12.5 15 17.5 20A
v
g
.
N

o
.
o
f

S
er

v
ic

e
N

o
d
es

Number of Tenants (× 100)

LLF-SN

LLF-CN

WRR

R-VMPR

(b) Google-Based Cloud

Fig. 5: Average Number of Service Nodes Served by Each
Tenant vs. Number of Tenants

 2

 4

 6

 8

 10

2 4 6 8 10 12 14

T
h
ro

u
g
h
p
u
t

(T
b
p
s)

Number of Tenants (× 10)

R-VMPR

WRR

LLF-CN

LLF-SN

(a) Koala-Based Cloud

 20

 40

 60

 80

 100

5 7.5 10 12.5 15 17.5 20

T
h
ro

u
g
h
p
u
t

(T
b
p
s)

Number of Tenants (× 100)

R-VMPR

WRR

LLF-CN

LLF-SN

(b) Google-Based Cloud

Fig. 6: Throughput of All Service Nodes vs. Number of
Tenants

the robustness performance. The first set of simulations
compares the load balancing performance of R-VMPR with
three benchmarks. As shown in Figs. 2-3, when the number
of tenants increases, the load ratio of computing nodes and
service nodes accordingly increases in both the Koala-based
cloud and the Google-based cloud. For the load ratio of
computing nodes, the increasing rate of R-VMPR is much
slower than that of both LLF-SN and WRR. From the left
plot of Fig. 2, when there are 100 tenants in the Koala-
based cloud, the load ratio of computing nodes is 0.54. For
the LLF-SN, WRR and LLF-CN solutions, the load ratio of
computing nodes equals to 0.68, 0.64 and 0.53, respectively.
This shows R-VMPR can achieve better load balancing
performance of computing nodes compared with LLF-SN
and WRR, but slightly worse performance than LLF-CN.
Since the goal of the LLF-CN algorithm is only to achieve
load balancing among all computing nodes, this shows that

our algorithm has good load balancing performance among
computing nodes. For the load ratio of service nodes, we
find the increasing rate of R-VMPR is much slower than
that of both LLF-CN and WRR. Similarly, we find that
R-VMPR can achieve better load balancing performance
of service nodes compared with WRR and LLF-CN, but
slightly worse than LLF-SN, as shown in Fig. 3. That is
because the LLF-SN algorithm only balances the load among
all service nodes. As shown in the right plot of Figs. 2-
3, when there are 1500 tenants in the Google-based cloud,
the load ratio of computing nodes and service nodes by
LLF-CN are 0.52 and 0.68, respectively; the load ratio of
computing nodes and service nodes by LLF-SN are 0.59
and 0.50, respectively. But the load balancing factor λ of our
algorithm is max{0.53, 0.53} = 0.53. Based on the above
analysis, our algorithm can simultaneously achieve a load
balancing trade-off among all service nodes and among all
computing nodes, which combines the advantages of LLF-
CN and LLF-SN. This is because we consider the load of
computing nodes and service nodes as a whole, which plays
an important role in load balancing of the cloud.

The second set of simulations exhibits the robustness
metrics. We use the average number of tenants served by
each service node and the average service node accessed
by each tenant to evaluate the robustness of clouds, as
shown in Figs. 4-5. As the number of tenants increases,
we find that the average number of served tenants by each
service node is not more than 40 by R-VMPR, as shown in
Fig. 4. This means when a service node fails, at most 40

6

tenants will be affected. However, as the number of tenants
increases, the number of affected tenants also increases by
using the other three benchmarks. Moreover, we find that
the failure of service nodes will affect more tenants in the
Google-based cloud, as shown in Fig. 4(b). Compared with
LLF-CN, WRR, and LLF-SN, our algorithm reduces the
average number of tenants served by a service node by
62.6%, 55.6%, and 51.8%, respectively. Next we observe
the impact of malicious tenants on clouds. In the Koala-
based cloud, once a malicious tenant attacks the cloud,
the number of average attacked service nodes is 10, 14.2,
14.0, 18.7 by R-VMPR, LLF-SN, LLF-CN, and WRR,
respectively. Compared with SJF, WRR, and LLF-LF, our
algorithm improves the robustness by 29.5%, 46.5% and
28.5%, respectively.

Our last set of simulations compares R-VMPR with other
benchmarks under robustness constraints. By default, we
set h as 10 and w as 40 both in the Koala-based cloud
and the Google-based cloud. After placing all VMs on the
computing nodes, we consider whether the traffic served by
service nodes will violate the robustness constraints. If the
service node violates the robustness constraints, then the
service node will refuse to serve the extra violated traffic. As
shown in the left plot of Fig. 6, when there are 100 tenants in
the Koala-based cloud, the cloud throughput equals to 5.05,
1.53, 2.54, and 2.35 Tbps by R-VMPR, LLF-SN, WRR,
and LLF-CN, respectively. Our algorithm improves the cloud
throughput by 150% on average.

VI. CONCLUSION

Robustness is a critical challenge in clouds. In this paper,
we improve the cloud robustness through multi-constraint
VM placement, and we design a rounding-based algorithm
with bounded approximation factors. The simulation results
show that our proposed algorithm can achieve superior
robustness performance compared with existing solutions.

ACKNOWLEDGEMENT

The corresponding authors of this paper are Gongming
Zhao and Hongli Xu. This article was supported in part by
the National Science Foundation of China (NSFC) under
Grants 61822210, 61936015, and U1709217; and in part by
Anhui Initiative in Quantum Information Technologies under
Grant AHY150300.

REFERENCES

[1] “Amazon ec2,” https://docs.aws.amazon.com/ec2/index.html.
[2] “Alibaba cloud,” https://us.alibabacloud.com.
[3] “Amazon virtual private cloud user guide,” https://docs.amazonaws.

cn/en us/vpc/latest/userguide/VPC Subnets.html#vpc-subnet-basics.
[4] S. Zhang, Y. Liu, W. Meng, J. Bu, S. Yang, Y. Sun, D. Pei, J. Xu,

Y. Zhang, L. Song et al., “Efficient and robust syslog parsing for
network devices in datacenter networks,” IEEE Access, vol. 8, pp.
30 245–30 261, 2020.

[5] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. Marvel, “Malicious co-residency on the cloud: Attacks and
defense,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

[6] A. Arora, S. K. Yadav, and K. Sharma, “Denial-of-service (dos) attack
and botnet: Network analysis, research tactics, and mitigation,” in
Research Anthology on Combating Denial-of-Service Attacks. IGI
Global, 2021, pp. 49–73.

[7] R. Potharaju and N. Jain, “Demystifying the dark side of the middle:
a field study of middlebox failures in datacenters,” in Proceedings of
the 2013 conference on Internet measurement, 2013, pp. 9–22.

[8] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi, and
D. Xiang, “Netbouncer: Active device and link failure localization in
data center networks,” in 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), 2019, pp. 599–614.

[9] P. Mishra, E. S. Pilli, V. Varadharajan, and U. Tupakula, “Intrusion
detection techniques in cloud environment: A survey,” Journal of
Network and Computer Applications, vol. 77, pp. 18–47, 2017.

[10] B. Yong, G. Zhang, H. Chen, and Q. Zhou, “Intelligent monitor system
based on cloud and convolutional neural networks,” The Journal of
Supercomputing, vol. 73, no. 7, pp. 3260–3276, 2017.

[11] A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim, “Seawall:
Performance isolation for cloud datacenter networks.” in HotCloud,
2010.

[12] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-
practice in data center virtualization: Toward a better understanding of
vm usage,” in 2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2013, pp. 1–12.

[13] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[14] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in 2015 11th International
Conference on Network and Service Management (CNSM). IEEE,
2015, pp. 50–56.

[15] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, and L. Huang, “Incremental
server deployment for scalable nfv-enabled networks,” in IEEE INFO-
COM 2020-IEEE Conference on Computer Communications. IEEE,
2020, pp. 2361–2370.

[16] W. JingZhou, Z. Gongming, X. Hongli, H. He, L. Luyao, and Y. Y-
ongqiang, “Robust service mapping in multi-tenant clouds,” in IEEE
INFOCOM 2021-The 40th Annual IEEE International Conference on
Computer Communications. IEEE, 2012, pp. 1–11.

[17] P. Raghavan and C. D. Tompson, “Randomized rounding: a technique
for provably good algorithms and algorithmic proofs,” Combinatorica,
vol. 7, no. 4, pp. 365–374, 1987.

[18] K. Mills, J. Filliben, and C. Dabrowski, “Comparing vm-placement
algorithms for on-demand clouds,” in 2011 IEEE Third International
Conference on Cloud Computing Technology and Science. IEEE,
2011, pp. 91–98.

[19] J. Guo and L. N. Bhuyan, “Load balancing in a cluster-based web
server for multimedia applications,” IEEE Transactions on Parallel
and Distributed Systems, vol. 17, no. 11, pp. 1321–1334, 2006.

[20] N. K. Das, M. S. George, and P. Jaya, “Incorporating weighted round
robin in honeybee algorithm for enhanced load balancing in cloud
environment,” in 2017 International Conference on Communication
and Signal Processing (ICCSP). IEEE, 2017, pp. 0384–0389.

[21] C. Baun and M. Kunze, “The koala cloud management service:
A modern approach for cloud infrastructure management,” in
Proceedings of the First International Workshop on Cloud Computing
Platforms, ser. CloudCP ’11. New York, NY, USA: Association for
Computing Machinery, 2011. [Online]. Available: https://doi.org/10.
1145/1967422.1967423

[22] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format+ schema,” Google Inc., White Paper, pp. 1–14, 2011.

[23] “Tencent cloud instance types,” intl.cloud.tencent.com/document/
product/213/11518.

